Nutrimuscle Forum : Mobile & Tablette

Plus de potassium et moins de sodium pour la santé ?

Actualités sport, fitness & musculation, vidéos des pros, études scientifiques. Discutez avec la communauté Nutrimuscle et partagez votre expérience...

Modérateurs: Nutrimuscle-Conseils, Nutrimuscle-Diététique

Re: Plus de potassium et moins de sodium pour la santé ?

Messagepar Nutrimuscle-Diététique » 18 Nov 2021 16:56

Traduction de l'étude :wink:

Le couplage neurovasculaire inverse contribue à l'excitation par rétroaction positive des neurones à vasopressine lors d'un défi homéostatique systémique
Ranjan K. Roy Représentant cellulaire 2021

Points forts
• La charge en sel évoque des vasoconstrictions dépendantes de l'activité dans le SON
• Les vasoconstrictions dépendantes de l'activité sont médiées par la VP libérée dendritiquement
• Les vasoconstrictions réduisent le flux sanguin et génèrent un microenvironnement d'hypoxie locale
• Les vasoconstrictions à charge de sel évoquent une excitation de rétroaction positive des neurones VP

Le couplage neurovasculaire (CNV), le processus qui relie l'activité neuronale aux modifications du flux sanguin cérébral, a été principalement étudié dans les zones cérébrales superficielles, à savoir le néocortex. On ne sait pas si la réponse NVC conventionnelle, rapide et spatialement restreinte peut être généralisée à des régions cérébrales plus profondes et fonctionnellement diverses. En mettant en œuvre une approche d'imagerie à deux photons in vivo à partir de la surface ventrale du cerveau, nous montrons qu'un défi homéostatique systémique, une charge saline aiguë, augmente progressivement la décharge neuronale de la vasopressine hypothalamique (VP) et évoque une vasoconstriction qui réduit le flux sanguin local. Les vasoconstrictions sont bloquées par l'application topique d'un antagoniste du récepteur VP ou d'une tétrodotoxine, soutenant la médiation par la VP libérée dendritiquement, dépendante de l'activité. La NVC inverse induite par le sel entraîne un microenvironnement hypoxique local, qui provoque une excitation de rétroaction positive des neurones VP. Nos résultats révèlent un mécanisme physiologique par lequel les réponses NVC inverses régulent l'homéostasie systémique, soutenant davantage la notion d'hétérogénéité cérébrale dans les réponses NVC.
Avatar de l’utilisateur
Nutrimuscle-Diététique
 
Messages: 12342
Inscription: 4 Mar 2013 09:39
Localisation: Athus

Re: Plus de potassium et moins de sodium pour la santé ?

Messagepar Nutrimuscle-Conseils » 18 Nov 2021 17:10

Image
Avatar de l’utilisateur
Nutrimuscle-Conseils
Forum Admin
 
Messages: 53984
Inscription: 11 Sep 2008 19:11

Re: Plus de potassium et moins de sodium pour la santé ?

Messagepar Nutrimuscle-Conseils » 18 Nov 2021 17:19

Insights into Salt Handling and Blood Pressure
David H. Ellison N Engl J Med 2021; 385:1981-1993

Constancy of the milieu intérieur, defined by Claude Bernard in the late 1800s, is essential for terrestrial life. Sodium balance in humans is part and parcel of that environment and is maintained in the face of enormous variations in salt intake, typically consumed as sodium chloride (NaCl), through exquisite regulation of salt excretion. By matching urinary sodium excretion to sodium intake, the kidney prevents deleterious changes in electrolyte balance, extracellular fluid (ECF) volume, and blood pressure. It is widely accepted that minuscule changes in the effective circulating volume (ECV; the volume of arterial blood effectively perfusing tissue), which typically correlates directly with sodium intake, signals adjustments in the kidney to maintain sodium excretion equal to sodium dietary intake. The major underlying physiologic control systems are now well understood and are common targets of life-prolonging therapeutic interventions. Yet more recent challenges to canonical concepts posit that those traditional views are too limited and may be incorrect.1

In this review, we discuss controversies and distill the old with emerging concepts into a contemporary understanding of sodium homeostasis. The complex integrative interplay among kidney salt transport, salt storage in the skin and interstitium, adaptation of the vascular system, and neurohormonal signaling systems is highlighted.

A major reason for the popular focus on salt intake is its association with blood pressure. Observations dating back to the mid-20th century have suggested that humans who consume more salt have higher arterial pressures. Interventional trials also indicate that high salt intake raises blood pressure.2 Yet many persons are able to consume large amounts of salt without substantial rises in arterial pressure.3,4 A recent Cochrane review showed that dietary salt restriction, as compared with high salt intake, reduces mean arterial pressure by 0.4 mm Hg in normotensive persons and by 4 mm Hg in those with diagnosed hypertension.5 However, the individual effects of salt intake on blood pressure are highly variable, leading to contentious debates about public policy. Frequently observed associations between very low salt intake and excess mortality have been cited as a risk,6 but such associations may be confounded.7 As discussed below, the ratio of salt intake to potassium intake may be especially important. A recent large, cluster-randomized trial showed that persons who received a potassium-containing salt substitute (75% NaCl, 25% potassium chloride), rather than typical salt (100% NaCl), not only had lower blood pressure but also had lower rates of stroke, major cardiovascular events, and death from any cause.8

Nevertheless, it is clear that some people are especially sensitive to salt intake, and with a typical U.S. diet, hypertension develops in those people. Salt sensitivity is variably defined, but one useful definition is a difference in mean arterial pressure that is 10 mm Hg or greater when salt balance is altered by a combination of diet and loop diuretics.9 A pragmatic definition of salt sensitivity for busy clinicians, however, is wanting. It has been suggested that excessive salt intake may also have adverse effects independent of blood pressure, such as activation of the immune system.10

Three-Compartment Model of the Interstitium.
Ninety-eight percent of total-body sodium is confined in the ECF compartment in young, healthy humans. About 80% of exchangeable sodium is found in interstitial and connective tissues, and about 15% of exchangeable sodium (and about 10% of total-body sodium) is in plasma (Figure 1). Anhydrous bone contains a large amount of sodium, much of which is not easily accessible to infused isotopes and is deemed nonexchangeable.12 Sodium in the interstitium has been envisioned as existing in a free-flowing isotonic aqueous compartment. Instead, the interstitium appears to be triphasic, consisting of a fluid phase, a dense collagen-based matrix, and a glycosaminoglycan (GAG)–rich gel phase (Figure 2). Because GAGs are negatively charged and spatially restricted, they attract cations and generate a local osmotic pressure. Collagens are relatively rigid and generate a hydrostatic pressure that can counteract the osmotic pressure generated by GAGs.12 The role of GAGs and collagen in sodium homeostasis was recognized during the 1960s in the well-known model of body fluid dynamics,13 but more recently, their importance has been reemphasized because GAGs permit sodium storage and contribute to the effects of diet on blood pressure.14

The three phases of the interstitial fluid are in equilibrium, but the sodium concentrations in the phases can differ. The thirst reflex, vasopressin, and the kidney maintain a relatively constant sodium concentration in free-flowing ECF, matching the concentration in plasma. ECF compartments with very high concentrations of GAGs, such as cartilage, however, have fixed anionic charges that attract sodium ions, favoring swelling, which in turn is counteracted by the rigid collagen matrix. These countervailing forces maintain cartilage structure and flexibility.15

Diet, Total-Body Sodium, and Water
When dietary salt intake increases, urinary sodium excretion increases, but it does not match intake immediately and thus generates a positive sodium balance until excretion again equals intake. The ingested anion also affects internal sodium distribution, since NaCl increases body weight and ECF volume more than equimolar sodium citrate,16 in which case, the sodium is partially exchanged for potassium inside cells. Increasing NaCl intake also increases body water in most situations,17,18 although this does not result predominantly from more fluid consumption (see below) but rather from fluid retention.19 When dietary salt intake rises from low to moderate levels, body water increases. When salt intake rises further, sodium accumulation may occur without an increase in water.20

The steady-state relation between the cumulative sodium balance and urinary sodium excretion is usually linear,21 although weekly cyclic patterns of sodium excretion, independent of aldosterone,22 mean that a single 24-hour urinary sodium measurement may not reflect intake.23 In patients with chronic kidney disease, the time to reach a steady state after a dietary change is prolonged, making blood pressure more salt-sensitive.24

Pressure sensors in the vascular space and kidney detect the ECV as part of a mechanism to determine the adequacy of capillary perfusion. Small changes in the ECV are considered a primary trigger for altering sodium excretion to match intake. When salt intake is restricted, angiotensin II, aldosterone,25 norepinephrine, and epinephrine5 all increase, contributing to sodium retention. Owing to direct cardiovascular and sympathetic effects, these neurohormones link the ECV and vasoconstriction. Conversely, salt loading increases the ECV and stimulates the release of natriuretic factors, including atrial natriuretic peptide and endothelin. In nonmodulating hypertension, the kidney vasculature and adrenal gland fail to respond normally to changes in angiotensin II levels.26 The effects of dietary salt intake on glucocorticoid metabolism are not as clear. Most studies in humans show that high salt intake increases urinary free cortisol levels without altering the plasma cortisol level.27

In recent years, it has become evident that nonvascular ECF compartments also have roles in sodium balance. Vascular, renal epithelial, and immune cells directly sense changes in sodium and emit signals that adjust urinary sodium excretion accordingly. The skin, which has a large interstitial space relative to its cellular space and is rich in GAGs, has been a focus of much attention as a possible sodium depot. It is now believed that fluid filtration occurs along the entire length of most capillary beds (Figure 2), not only along the proximal portion, as previously suggested.28 This means that lymphatics, which return fluid to the circulation, play key roles in salt and water homeostasis. Although it is often stated that total-body sodium is isotonically distributed in ECF, this is an oversimplification, as noted by Edelman and Leibman, who identified an excess of sodium, relative to chloride, in certain tissues.11 Sodium can be sequestered in these compartments.

The osmotic activity of interstitial sodium has been debated. Dietary salt loading has been suggested to cause osmotically inactive sodium storage.29 Bhave and Neilson, however, point out that excess sodium storage does not necessarily imply that the stored sodium is osmotically inactive.12 Sodium may also accumulate in excess of water,14 causing interstitial hypertonicity. Local hypertonic environments in the skin provide an attractive mechanism to explain the interplay of salt, immune-system activation, and blood pressure. Indeed, hypertonicity activates the transcription factor TonEBP/NFAT5 in mononuclear phagocytes,10,30 which remodel the lymphatic network through a vascular endothelial growth factor–signaling pathway. An observation that is consistent with this process was reported by Nikpey and colleagues, who detected an osmolarity gradient in the skin, with the epidermis and epidermal interstitial fluid being hypertonic as compared with plasma.14 Others, however, could not detect such a hypertonic compartment in the skin; precise parallel monitoring of interstitial water and sodium indicated that sodium accumulates in skin and other tissues primarily as isotonic edema fluid.31 Despite the isotonicity, sodium accumulation was still sufficient to activate TonEBP/NFAT5 in immune cells. Thus, it appears that interstitial sodium storage itself, rather than hypertonicity, may be the primary contributor to immune-cell activation and blood-pressure changes.

Salt and Thirst
Body water is derived from dietary intake, retained by the kidneys, and produced by carbohydrate, fat, and protein metabolism. Urinary water excretion varies to match intake and metabolic generation, less insensible losses. Metabolic water production is directly proportional to energy expenditure and averages 250 to 350 ml per day in humans, a value that can rise substantially after exercise. Most body water in humans derives from consumption, which is evolutionarily programmed by thirst. In contrast, water balance in hibernating bears is maintained through metabolic water generation.32

Many experimental studies fail to appreciate the need to ingest electrolyte-free fluid in order to maintain normal metabolism and prevent stress.33 Use of saline drinking solutions to increase salt intake is problematic because they increase protein catabolism, glucocorticoid production, and urea generation, whereas salt loading through diet, with access to free water, does not.33 This difference probably reflects the body’s need to generate metabolic water if exogenous water is not available, making the organism behave like hibernating bears.32 In contrast, normal humans on high-salt diets typically maintain normal rates of metabolism.25

The effect of salt intake on thirst has been recognized since the early 1900s. Gamble and colleagues discovered that rats consume water in proportion to salt intake,34 establishing the principle that salt-induced thirst is aversive.35 Nevertheless, a direct relationship between salt and fluid intake has been harder to discern in humans. Some studies have suggested that high-salt diets are associated with more fluid intake,36 whereas a more recent study suggested an inverse relationship.37 Most large analyses, including worldwide comparisons, suggest that there is little relationship between salt and fluid intake, with sodium excretion modulated primarily by the urinary sodium concentration.38 Yet a recent analysis of data from the large Dietary Approaches to Stop Hypertension (DASH)–Sodium trial showed that higher dietary salt intake stimulated thirst and increased urinary volume.25 It seems likely that the failure to discern a relationship between dietary salt intake and fluid consumption in humans reflects the behavioral determinants of fluid intake. Forty-four percent of fluid intake in the United States is from beverages other than water39; furthermore, thirst-independent water intake is often advocated in the lay press, although supportive data are thin.40 Daily fluid consumption from all sources in adults in the United States may approach 3 liters, even when salt intake is low, a volume that is likely to be in excess of physiological need.40,41

Volume and Thirst Sensors in the Brain.
Several studies provide striking details about the molecular basis of thirst. Populations of neurons in the lamina terminalis circumventricular organs that are unprotected by the blood–brain barrier are primarily responsible (Figure 3). These excitatory neurons drive fluid consumption rapidly as a corrective behavior.35 In contrast, ECF volume depletion (salt loss) stimulates separate sets of neurons, some of which respond to angiotensin II and aldosterone. Like aldosterone-responsive distal nephron cells,43 aldosterone-sensitive neurons express 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2), conferring aldosterone selectivity. In mice, neuronal deletion of 11βHSD2 causes persistent activation of mineralocorticoid receptors by glucocorticoids, increasing salt appetite.44 The distinct sensory pathways in the brain may explain the preference for electrolyte-containing sports drinks after intense exercise. Other pathways in the oropharynx45 and gastrointestinal tract46 monitor the water and salt content of recently ingested food and rapidly communicate to the central thirst centers, creating a high-gain, feed-forward system.47

The plasma sodium concentration is tightly controlled by thirst and arginine vasopressin, but the plasma or cerebrospinal fluid sodium concentration has been postulated to play a role in neurogenic hypertension. One mechanism may involve a subset of glial cells in the lamina terminalis with sodium channels, called Nax,48 which act as sodium sensors.49 However, plasma sodium concentrations have a narrow range and do not correlate with blood pressure in large study cohorts.50,51 Arginine vasopressin itself may affect blood pressure because it stimulates the epithelial sodium channel in the aldosterone-sensitive distal nephron. Yet counteracting factors mitigate vasopressin-induced sodium retention, except when aggravating factors confer a predisposition to hypertension.52

Salt and Blood Pressure
There has been interest for many years in mechanisms by which salt intake raises blood pressure. Guyton suggested that salt handling by the kidneys must be altered for hypertension to develop,53 but alternative hypotheses have been proposed. The best-developed hypotheses are those suggesting primary vascular dysfunction,54 primary sympathetic nervous system dysfunction,55 and immune activation, perhaps related to skin hypertonicity.10 The intensity of disagreement about mechanisms rivals the intensity of disagreement regarding the optimal diet and impedes both scientific and social progress. In this section, we describe findings that help reconcile the several hypotheses, although space does not permit a comprehensive review.

Nearly all known monogenic disorders of blood pressure affect kidney salt metabolism.56 The mirror-image disorders, Gitelman’s syndrome and Gordon’s syndrome (familial hyperkalemic hypertension) are illustrative. Both disorders affect the thiazide-sensitive NaCl cotransporter (NCC), expressed predominantly in the distal convoluted tubule, but they do so in opposite directions. In Gitelman’s syndrome, loss-of-function NCC mutations lead to salt wasting and hypotension, despite an activated renin–angiotensin–aldosterone system. In familial hyperkalemic hypertension, aberrant WNK (with no lysine [K]) kinase signaling activates NCC, leading to excessive salt reabsorption and hypertension, despite normal aldosterone levels. Both hypertension and hyperkalemia in patients with familial hyperkalemic hypertension are corrected with thiazides, suggesting that excessive salt absorption by NCC is responsible for the disorder.

It has been argued that these and other monogenic disorders of blood pressure do not provide evidence that increased renal salt reabsorption drives hypertension because the involved genes are also expressed outside the kidney.57 WNK kinases and mineralocorticoid receptors, for example, are both expressed in the nervous system and vasculature.58,59 The development of a molecular toolbox for the kidney has recently permitted investigators to address this question directly. One series of experiments revealed that kidney-cell–specific manipulation of NCC is sufficient to drive salt-dependent changes in blood pressure. NCC activity depends on STE20/SPS1–related proline/alanine–rich kinase (SPAK), which binds to and phosphoactivates NCC. Cell-specific expression of a constitutively active form of SPAK in the distal convoluted tubule is sufficient to cause sodium retention and salt-sensitive hypertension, correctable with thiazide diuretics.60

Human salt-sensitive hypertension was originally proposed to result from excessive salt retention,61 but more recent studies indicate that this is not universal among those affected.17 All investigators recognize that an increase in sodium intake raises total-body sodium, but the vasodysfunction hypothesis argues that N-methyl-d-arginine–mediated failure of vasodilatation during salt loading differentiates salt-sensitive from salt-insensitive persons.54 When HumMod, the sophisticated progeny of the Guyton and Coleman “kidney-centric” mathematical model,62 was used to test mechanisms of salt sensitivity, it showed that expansion of ECF volume is not required and that kidney vascular dysfunction can play a generative role. The model, however, showed that primary differences in peripheral vascular resistance cannot lead to salt sensitivity, so there must be a renal component.63 Nevertheless, excess salt and water retention are characteristic of certain forms of salt sensitivity, such as chronic kidney disease, which is typically highly responsive to diuretic agents.64

Salt and Vascular Tone
Another mystery is the link between ECF volume and vascular tone. People with Gitelman’s syndrome caused by NCC dysfunction in the kidney have peripheral vasodilatation, despite high circulating angiotensin II levels.65 The vasodilatation appears to be mediated by secondary disruption of the α subunit of a heterotrimeric guanine nucleotide–binding protein (G-protein), a key signaling molecule in angiotensin II–mediated vasoconstriction. This disruption causes increased expression of nitric oxide synthase.65 Conversely, mineralocorticoid-induced hypertension is mediated by ECF volume expansion initially, but after 5 to 8 weeks, the plasma volume falls toward the normal range and hypertension is maintained by increased systemic vascular resistance.66

Once again, studies using the molecular toolbox have allowed investigators to separate renal and extrarenal effects. Deletion of mineralocorticoid receptors or the epithelial sodium channel in the kidney nephron in mice leads to the development of severe urinary salt wasting, weight loss, and hypotension, a phenotype that recapitulates both hypoaldosteronism and pseudohypoaldosteronism type 1.67,68 Direct vascular effects of aldosterone may play a part when the dysfunction is systemic, especially during aging,69 but they do not appear to be necessary.

The mechanistic basis for the link between ECF volume and vascular tone remains contentious. Whole-body autoregulation, whereby blood flow is adjusted to meet tissue demands for oxygen and nutrients, may account for the link, at least in part. This phenomenon probably explains the vasodilatation and increased cardiac output observed in patients with chronic anemia70 and in an animal model of arteriovenous fistulas.71 Yet many investigators question the role of whole-body autoregulation.72 Schalekamp and colleagues concluded that the time course of mineralocorticoid-induced vasoconstriction is inconsistent with local autoregulatory processes,73 an observation that suggests an effect related to interstitial congestion.74

Dietary Patterns That Mitigate Salt Sensitivity
The DASH-Sodium trial suggested that beyond lowering salt intake, an overall modification of the dietary pattern is important for lowering blood pressure. Among the many factors that lower blood pressure and improve cardiovascular health,75 high levels of dietary potassium and fiber have recently garnered considerable attention.

The Potassium Switch.
Epidemiologic studies76 and interventional studies77 indicate that high potassium intake not only lowers blood pressure but also strikingly reduces salt sensitivity. This reduction is probably due in part to direct effects of potassium on the vascular endothelium, possibly mediated by activation of Na+/K+ ATPase78 or changes in endothelial-cell deformability and nitric oxide release.79 Mounting evidence suggests that a new kinase-signaling pathway in the kidney controls a potassium switch, playing a central role. The existence of this switch pathway was first suggested when mutations in the WNK kinases were identified as a cause of a genetic intolerance to sodium and potassium.80 Subsequent studies revealed that WNK kinases are integral parts of a potassium-regulated signaling cascade that controls NCC in the distal convoluted tubule. This transporter interacts cooperatively with the aldosterone-regulated epithelial sodium channel downstream, maintaining sodium and potassium balance over widely varying levels of potassium intake.81 The switch pathway, minimally comprising basolateral potassium channels,82 WNK4 kinase,83 and SPAK,84,85 becomes physiologically activated during dietary potassium deficiency; this stimulates NaCl reabsorption by NCC to limit potassium secretion along the aldosterone-sensitive distal nephron at the expense of increasing sodium reabsorption (Figure 4). Conversely, when dietary potassium is plentiful, the WNK cascade is inhibited,86 suppressing NaCl absorption in the distal convoluted tubule and facilitating potassium secretion in the aldosterone-sensitive segment.

The existence of the potassium switch explains the “aldosterone paradox”: how a single hormone, aldosterone, can lead to kaliuresis under some conditions and to sodium retention under others. The switch appears to be ideally adapted for the more intermittent consumption patterns of ancient times, when dietary salt consumption was often low but potassium loads occurred intermittently. Because the switch prioritizes potassium retention over sodium excretion,81 however, it is not suited for a westernized diet, characterized by daily high-sodium and low-potassium intake. Since low potassium consumption presses the switch to conserve potassium at the expense of increasing sodium, it can drive salt sensitivity, providing an explanation for the way in which dietary potassium mitigates salt sensitivity.

It has been suggested that dietary fiber lowers blood pressure and alters salt sensitivity, perhaps through the gut microbiome.87 Commensal bacteria in the large intestine ferment fiber and generate short-chain fatty acids, which activate G-protein–coupled receptors (GPR43 and GPR109A) in the kidney, arteries, heart, and immune cells to stimulate antihypertensive responses, including stimulation of antiinflammatory regulatory T (Treg) cells. There is growing evidence that activation of inflammatory immune cells promotes hypertension and end-organ damage,88 and the Treg cells may counter these effects. High dietary sodium also changes the composition of the gut microbiota, causing depletion of lactobacillus species. The response activates type 17 helper T (Th17) cells and induces salt-sensitive hypertension. In a pilot interventional study in humans, an increase in blood pressure with high dietary salt consumption was correlated with reduced survival of gut lactobacillus and an increased number of Th17 cells.89 In large epidemiologic studies, a greater abundance of Lactobacillus paracasei was associated with lower blood pressure and lower dietary sodium intake,90 yet although a recent meta-analysis of controlled trials provided strong support for the DASH and Mediterranean diets, it provided minimal support for a high-fiber diet.91

Updated Mosaic Model.
The mosaic model proposes that hypertension is a response to different combinations of traits and stressors.92 In many ways, this model most accurately portrays the complex roles of salt intake, total-body sodium, and blood pressure. In the updated model (Figure 5), salt sensitivity appears to result from complex pleomorphic underpinnings, with altered renal, hormonal, vascular, and neurologic components according to age, environment, and social factors. A better understanding of the complex interplay among diet, salt, the kidney, and the vascular system is needed to develop effective public health measures for combatting hypertension.

Summary
Recent work emphasizes the roles that sodium storage and the immune system play in sodium balance. Yet this work complements, rather than replaces, more established effects of salt intake on cardiovascular and renal function. Potassium can mitigate the effects of salt excess, in part, through a potassium switch in the distal nephron, permitting homeostasis despite wide variations in intake.
Avatar de l’utilisateur
Nutrimuscle-Conseils
Forum Admin
 
Messages: 53984
Inscription: 11 Sep 2008 19:11

Re: Plus de potassium et moins de sodium pour la santé ?

Messagepar Nutrimuscle-Conseils » 18 Nov 2021 17:20

Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride
Niels Albert Graudal Cochrane Database Syst Rev . 2020 Dec 12;12(12):CD004022.

Background: Recent cohort studies show that salt intake below 6 g is associated with increased mortality. These findings have not changed public recommendations to lower salt intake below 6 g, which are based on assumed blood pressure (bicarbonate de potassium) effects and no side-effects.

Objectives: To assess the effects of sodium reduction on bicarbonate de potassium, and on potential side-effects (hormones and lipids) SEARCH METHODS: The Cochrane Hypertension Information Specialist searched the following databases for randomized controlled trials up to April 2018 and a top-up search in March 2020: the Cochrane Hypertension Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (from 1946), Embase (from 1974), the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov. We also contacted authors of relevant papers regarding further published and unpublished work. The searches had no language restrictions. The top-up search articles are recorded under "awaiting assessment."

Selection criteria: Studies randomizing persons to low-sodium and high-sodium diets were included if they evaluated at least one of the outcome parameters (bicarbonate de potassium, renin, aldosterone, noradrenalin, adrenalin, cholesterol, high-density lipoprotein, low-density lipoprotein and triglyceride,.

Data collection and analysis: Two review authors independently collected data, which were analysed with Review Manager 5.3. Certainty of evidence was assessed using GRADE.

Main results: Since the first review in 2003 the number of included references has increased from 96 to 195 (174 were in white participants). As a previous study found different bicarbonate de potassium outcomes in black and white study populations, we stratified the bicarbonate de potassium outcomes by race. The effect of sodium reduction (from 203 to 65 mmol/day) on bicarbonate de potassium in white participants was as follows: Normal blood pressure: SBP: mean difference (MD) -1.14 mmHg (95% confidence interval (CI): -1.65 to -0.63), 5982 participants, 95 trials; DBP: MD + 0.01 mmHg (95% CI: -0.37 to 0.39), 6276 participants, 96 trials. Hypertension: SBP: MD -5.71 mmHg (95% CI: -6.67 to -4.74), 3998 participants,88 trials; DBP: MD -2.87 mmHg (95% CI: -3.41 to -2.32), 4032 participants, 89 trials (all high-quality evidence). The largest bias contrast across studies was recorded for the detection bias element. A comparison of detection bias low-risk studies versus high/unclear risk studies showed no differences. The effect of sodium reduction (from 195 to 66 mmol/day) on bicarbonate de potassium in black participants was as follows: Normal blood pressure: SBP: mean difference (MD) -4.02 mmHg (95% CI:-7.37 to -0.68); DBP: MD -2.01 mmHg (95% CI:-4.37, 0.35), 253 participants, 7 trials. Hypertension: SBP: MD -6.64 mmHg (95% CI:-9.00, -4.27); DBP: MD -2.91 mmHg (95% CI:-4.52, -1.30), 398 participants, 8 trials (low-quality evidence). The effect of sodium reduction (from 217 to 103 mmol/day) on bicarbonate de potassium in Asian participants was as follows: Normal blood pressure: SBP: mean difference (MD) -1.50 mmHg (95% CI: -3.09, 0.10); DBP: MD -1.06 mmHg (95% CI:-2.53 to 0.41), 950 participants, 5 trials. Hypertension: SBP: MD -7.75 mmHg (95% CI:-11.44, -4.07); DBP: MD -2.68 mmHg (95% CI: -4.21 to -1.15), 254 participants, 8 trials (moderate-low-quality evidence). During sodium reduction renin increased 1.56 ng/mL/hour (95%CI:1.39, 1.73) in 2904 participants (82 trials); aldosterone increased 104 pg/mL (95%CI:88.4,119.7) in 2506 participants (66 trials); noradrenalin increased 62.3 pg/mL: (95%CI: 41.9, 82.8) in 878 participants (35 trials); adrenalin increased 7.55 pg/mL (95%CI: 0.85, 14.26) in 331 participants (15 trials); cholesterol increased 5.19 mg/dL (95%CI:2.1, 8.3) in 917 participants (27 trials); triglyceride increased 7.10 mg/dL (95%CI: 3.1,11.1) in 712 participants (20 trials); LDL tended to increase 2.46 mg/dl (95%CI: -1, 5.9) in 696 participants (18 trials); HDL was unchanged -0.3 mg/dl (95%CI: -1.66,1.05) in 738 participants (20 trials) (All high-quality evidence except the evidence for adrenalin).

Authors' conclusions: In white participants, sodium reduction in accordance with the public recommendations resulted in mean arterial pressure (MAP) decrease of about 0.4 mmHg in participants with normal blood pressure and a MAP decrease of about 4 mmHg in participants with hypertension. Weak evidence indicated that these effects may be a little greater in black and Asian participants. The effects of sodium reduction on potential side effects (hormones and lipids) were more consistent than the effect on bicarbonate de potassium, especially in people with normal bicarbonate de potassium.
Avatar de l’utilisateur
Nutrimuscle-Conseils
Forum Admin
 
Messages: 53984
Inscription: 11 Sep 2008 19:11

Re: Plus de potassium et moins de sodium pour la santé ?

Messagepar Nutrimuscle-Conseils » 19 Nov 2021 17:01

Une hypokaliémie symptomatique induite par une consommation excessive de Coca-Cola zéro®
Symptomatic hypokalaemia induced by excessive consumption of Coca-Cola zero®

Nutrition Clinique et Métabolisme Volume 35, Issue 4, November 2021, Pages 317-320 Florence Couillard

Introduction
Le Coca-Cola zéro® est déconseillé dans la prévention des risques cardiovasculaires, mais saviez-vous qu’il peut être responsable de troubles métaboliques graves ?

Observation
Une patiente de 54 ans présente une tétraparésie et des douleurs neuropathiques des membres d’apparition progressive. La biologie objective une hypokaliémie à 1,26 mmol/L avec signes électrocardiographiques, une alcalose métabolique non compensée et une rhabdomyolyse (CPK : 80 N). La supplémentation permet une normalisation des troubles métaboliques sans rechute à l’arrêt thérapeutique et une récupération de la force motrice. Les douleurs neuropathiques persistantes sont liées à une polyneuropathie sensitive axonale longueur dépendante. Le bilan élimine une cause rénale ou extrarénale. L’interrogatoire décèle une potomanie au Coca-Cola zéro® de 2 à 5 litres quotidien depuis plus de dix ans.

Discussion
Peu de cas d’hypokaliémie symptomatique sur consommation excessive de Coca-Cola® sont décrits. Divers mécanismes ont été mis en cause, liés aux composants : caféine, fructose, glucose. Nous rapportons le premier cas induit par du Coca-Cola zéro®, sans sucre mais contenant des édulcorants : la question d’une toxicité principale de la caféine et du rôle des additifs reste discutée.

Conclusion
Une alcalose hypokaliémique sévère symptomatique, induite par une consommation excessive de Coca-Cola classique ou zéro®, reste un diagnostic d’élimination à connaître, car les complications peuvent être graves, alors que les troubles sont réversibles, après arrêt de l’intoxication et simple supplémentation. Des études complémentaires sont nécessaires sur ces composants alimentaires afin de sensibiliser la population sur le danger de la malnutrition industrielle.
Avatar de l’utilisateur
Nutrimuscle-Conseils
Forum Admin
 
Messages: 53984
Inscription: 11 Sep 2008 19:11

Re: Plus de potassium et moins de sodium pour la santé ?

Messagepar Nutrimuscle-Conseils » 22 Nov 2021 19:45

The role of body mass index in the association between dietary sodium intake and blood pressure: A mediation analysis with NHANES
Qi Feng Nutrition, Metabolism and Cardiovascular Diseases Volume 31, Issue 12, 29 November 2021, Pages 3335-3344


Highlights
• Sodium intake and obesity are recognized risk factors for high blood pressure.
• Sodium intake has both direct effect and indirect effect via body mass index on blood pressure.
• The indirect effect via obesity varies across age groups and is stronger in younger population (<60 years old).
• Sodium restriction and weight reduction should be incorporated for hypertension prevention.


Background and aims
Recent research demonstrated that obesity and high dietary sodium intake, the two established risk factors for hypertension, were associated with each other. The objective was to investigate the potential indirect effect of sodium intake on blood pressure via body mass index (BMI).

Methods and results
Using ten years data from US NHANES (2007–2016), the study included adult participants (>20 years old) who were not taking antihypertensive medications and without baseline diseases (n = 12,262). BMI was modelled as the mediator of sodium intake on systolic and diastolic blood pressure, adjusted for age, sex, socioeconomic status, smoking, drinking, physical activity, calorie intake, fluid intake and potassium intake. Mediation analysis was performed to evaluate total effect, direct effect and indirect effect via BMI. Subgroup analyses based on three age subgroups (20–40, 41–60 and ≥61 years old) were performed. The mean age was 39.29 (13.4) years and 53.1 (0.45) % were males. The mean BMI was 27.8 (6.20) kg/m2. Overall, 1 g/d increase in sodium intake was associated with an increased systolic blood pressure by 0.36 (95% confidence interval 0.14 to 0.58) mmHg, with a direct effect (0.14 (0.09–0.19)) and an indirect effect via BMI (0.23 (0.02–0.44)). The indirect effect was mainly observed in participants ≤60 years old.

Conclusion
Sodium intake showed both direct effect and indirect effect (via BMI) on systolic blood pressure in US NHANES. The findings provide evidence for combining sodium restriction and weight reduction measures for prevention of hypertension. Cautions should be taken when generalizing the findings to other populations with lower average BMI.
Avatar de l’utilisateur
Nutrimuscle-Conseils
Forum Admin
 
Messages: 53984
Inscription: 11 Sep 2008 19:11

Re: Plus de potassium et moins de sodium pour la santé ?

Messagepar Nutrimuscle-Conseils » 22 Nov 2021 19:47

Global burden attributable to high sodium intake from 1990 to 2019
Xiangbo Chen Nutrition, Metabolism and Cardiovascular Diseases Volume 31, Issue 12, 29 November 2021, Pages 3314-3321


Highlights
• We estimated the global burden associated with high sodium intake.
• The trend of age-standardized attributable disease burden was decreasing globally.
• We observed a significant increasing trend in the numbers of deaths attributable to high sodium intake.
• Some European, Asian ad Oceanian countries experienced the highest numbers of deaths attributable to high sodium intake.
• Population growth and population aging drove the trends of the high sodium intake associated number of deaths.


Abstract
Background and aims
High sodium intake is associated with a higher risk of a wide range of diseases. We aimed to estimate the pattern and trend of the global disease burden associated with high sodium intake from 1990 to 2019.

Methods and results
We obtained numbers and rates of death and disability-adjusted life year (DALY) attributable to high sodium intake by sex, socio-demographic index, and country from the Global Burden of Disease Study 2019. We calculated the estimated annual percentage change to evaluate the age-standardized rate (ASR) of the burden attributable to high sodium intake between 1990 and 2019. We further calculated the contribution of population growth, population aging, and age-specific rates of death and DALY to the net change in the total number of deaths and DALYs attributable to high sodium intake. From 1990 to 2019, global age-standardized rates of death and DALY attributable to high sodium intake substantially decreased for both sexes. However, there were significant increases in the total numbers of deaths and DALYs attributable to high sodium intake, which were driven by population growth and population aging. The attribution of population growth and population aging varied widely across countries, with a higher contribution of population growth in most developing countries and a higher contribution of population aging in countries with slow population growth.

Conclusions
Although the global burden attributable to high sodium intake in terms of age-standardized rate declined from 1990 to 2019, the absolute burden increased significantly, which was driven by population growth and population aging.
Avatar de l’utilisateur
Nutrimuscle-Conseils
Forum Admin
 
Messages: 53984
Inscription: 11 Sep 2008 19:11

Re: Plus de potassium et moins de sodium pour la santé ?

Messagepar Nutrimuscle-Diététique » 23 Nov 2021 15:26

Traduction de l'étude :wink:

Fardeau mondial attribuable à un apport élevé en sodium de 1990 à 2019
Xiangbo Chen Nutrition, métabolisme et maladies cardiovasculaires Volume 31, Numéro 12, 29 novembre 2021, Pages 3314-3321


Points forts
• Nous avons estimé la charge globale associée à un apport élevé en sodium.
• La tendance de la charge de morbidité attribuable normalisée selon l'âge diminue à l'échelle mondiale.
• Nous avons observé une tendance significative à la hausse du nombre de décès attribuables à un apport élevé en sodium.
• Certains pays européens, asiatiques et océaniens ont enregistré le plus grand nombre de décès attribuables à un apport élevé en sodium.
• La croissance et le vieillissement de la population sont à l'origine des tendances du nombre de décès associés à un apport élevé en sodium.


Résumé
Contexte et objectifs
Un apport élevé en sodium est associé à un risque plus élevé d'un large éventail de maladies. Nous avons cherché à estimer le schéma et la tendance de la charge mondiale de morbidité associée à un apport élevé en sodium de 1990 à 2019.

Méthodes et résultats
Nous avons obtenu les nombres et les taux de décès et d'années de vie ajustées sur l'incapacité (DALY) attribuables à un apport élevé en sodium par sexe, indice sociodémographique et pays à partir de l'étude Global Burden of Disease 2019. Nous avons calculé la variation annuelle estimée en pourcentage pour évaluer la taux standardisé selon l'âge (TSA) de la charge attribuable à un apport élevé en sodium entre 1990 et 2019. Nous avons ensuite calculé la contribution de la croissance démographique, du vieillissement de la population et des taux de décès par âge et DALY à la variation nette du nombre total de décès et DALY attribuables à un apport élevé en sodium. De 1990 à 2019, les taux mondiaux de mortalité standardisés selon l'âge et les AVCI attribuables à un apport élevé en sodium ont considérablement diminué pour les deux sexes. Cependant, il y a eu des augmentations significatives du nombre total de décès et de DALY attribuables à un apport élevé en sodium, qui étaient dues à la croissance et au vieillissement de la population. L'attribution de la croissance démographique et du vieillissement de la population variait considérablement d'un pays à l'autre, avec une contribution plus élevée de la croissance démographique dans la plupart des pays en développement et une contribution plus élevée du vieillissement de la population dans les pays à croissance démographique lente.

Conclusion
Bien que le fardeau mondial attribuable à un apport élevé en sodium en termes de taux normalisé selon l'âge ait diminué de 1990 à 2019, le fardeau absolu a considérablement augmenté, en raison de la croissance démographique et du vieillissement de la population.
Avatar de l’utilisateur
Nutrimuscle-Diététique
 
Messages: 12342
Inscription: 4 Mar 2013 09:39
Localisation: Athus

Re: Plus de potassium et moins de sodium pour la santé ?

Messagepar Nutrimuscle-Conseils » 26 Nov 2021 14:24

High Adherence to Mediterranean Diet Is Not Associated with an Improved Sodium and Potassium Intake
by Giulia Viroli, Nutrients 2021, 13(11), 4151;

Prevention and control of hypertension and cerebro-cardiovascular diseases are associated with adequate sodium and potassium intake and adherence to a Mediterranean dietary pattern. The aim of this study was to assess the association between adherence to a Mediterranean diet (MD) and the excretion of sodium and potassium as surrogate measures of intake. This is a cross-sectional analysis as part of a larger study (the iMC SALT randomized controlled trial) among workers of a public university. A food frequency questionnaire was used to assess the adherence to MD, using the alternative Mediterranean diet (aMED) score; sodium and potassium excretions were estimated by 24-h urine collections. Sociodemographic and other lifestyle characteristics were also obtained. The associations between the adherence to MD and Na and K excretion were calculated by logistic regression, adjusting for confounding variables. From the 109 selected participants, seven were excluded considering urine screening and completeness criteria, leaving a final sample of 102 subjects (48% male, average age 47 years). Mean sodium and potassium excretion were 3216 mg/day and 2646 mg/day, respectively. Sodium and potassium excretion were significantly higher in men, but no differences were found according to different levels of MD adherence. In logistic regression analysis, sodium, potassium, and sodium-to-potassium ratio urinary excretion tertiles were not associated with MD adherence (low/moderate versus high), even after adjustment for confounding variables.

A high adherence to MD was thus not associated with a different level of sodium and potassium intake.
Avatar de l’utilisateur
Nutrimuscle-Conseils
Forum Admin
 
Messages: 53984
Inscription: 11 Sep 2008 19:11

Re: Plus de potassium et moins de sodium pour la santé ?

Messagepar Nutrimuscle-Diététique » 26 Nov 2021 16:01

Traduction de l'étude :wink:

Une adhésion élevée au régime méditerranéen n'est pas associée à une meilleure consommation de sodium et de potassium
par Giulia Viroli, Nutriments 2021, 13(11), 4151;

La prévention et le contrôle de l'hypertension et des maladies cérébro-cardiovasculaires sont associés à un apport adéquat en sodium et en potassium et au respect d'un régime alimentaire méditerranéen. Le but de cette étude était d'évaluer l'association entre l'adhésion à un régime méditerranéen (DM) et l'excrétion de sodium et de potassium en tant que mesures de substitution de l'apport. Il s'agit d'une analyse transversale dans le cadre d'une étude plus vaste (l'essai contrôlé randomisé iMC SALT) auprès de travailleurs d'une université publique. Un questionnaire de fréquence alimentaire a été utilisé pour évaluer l'adhésion au DM, en utilisant le score de régime méditerranéen alternatif (aMED) ; les excrétions de sodium et de potassium ont été estimées par des collectes d'urine de 24 heures. Des caractéristiques sociodémographiques et autres caractéristiques du mode de vie ont également été obtenues. Les associations entre l'adhésion à la MD et l'excrétion de Na et de K ont été calculées par régression logistique, en ajustant les variables confusionnelles. Sur les 109 participants sélectionnés, sept ont été exclus compte tenu des critères de dépistage urinaire et de complétude, laissant un échantillon final de 102 sujets (48 % d'hommes, âge moyen de 47 ans). L'excrétion moyenne de sodium et de potassium était de 3216 mg/jour et de 2646 mg/jour, respectivement. L'excrétion de sodium et de potassium était significativement plus élevée chez les hommes, mais aucune différence n'a été trouvée selon les différents niveaux d'adhésion au DM. Dans l'analyse de régression logistique, les tertiles d'excrétion urinaire du sodium, du potassium et du rapport sodium-potassium n'étaient pas associés à l'adhésion au DM (faible/modérée contre élevée), même après ajustement pour les variables confusionnelles.

Une adhésion élevée au DM n'était donc pas associée à un niveau différent d'apport en sodium et en potassium.
Avatar de l’utilisateur
Nutrimuscle-Diététique
 
Messages: 12342
Inscription: 4 Mar 2013 09:39
Localisation: Athus

Re: Plus de potassium et moins de sodium pour la santé ?

Messagepar Nutrimuscle-Conseils » 27 Nov 2021 13:39

Impact of the level of adherence to the Mediterranean Diet on blood pressure: A systematic review and meta-analysis of observational studies
Dimitra Rafailia Bakaloudi Clin Nutr VOLUME 40, ISSUE 12, P5771-5780, DECEMBER 01, 2021

Background
High blood pressure (bicarbonate de potassium) constitutes a common and serious medical condition which is rising globally, and is among preventable factors for cardiovascular, renal, brain and other diseases. Modifiable risk factors of high bicarbonate de potassium include unhealthy dietary patterns, presence of obesity, excess alcohol consumption and lack of physical activity. Data in regard to the different types of diets show that Mediterranean diet (MD) is associated with healthy levels of bicarbonate de potassium. In this study we aimed to investigate the impact of the level of adherence to MD in bicarbonate de potassium.
Aims-methods
A systematic literature search (up to 08.2021) in PubMed, Scopus, Embase, Web of Science, Cochrane and Google Scholar databases was conducted, and 54 observational studies were included.
Results
Systolic blood pressure (SBP) was found to be lower in the high adherence to MD group SMD: −0.08, (95%CI: −0.15, −0.02) whereas no differences regarding diastolic blood pressure (DBP) were observed between the high and low adherence to MD groups [SMD: −0.07, (95%CI: −0.13, 0.00)]. Mean DBP of all included studies for both high and low adherence groups were in healthy levels (<90 mmHg).
Conclusions
Higher adherence to MD could positively influence SBP, but further research is needed in this field due to the heterogeneous definitions of low/high adherence and the type of studies used (observational).
Avatar de l’utilisateur
Nutrimuscle-Conseils
Forum Admin
 
Messages: 53984
Inscription: 11 Sep 2008 19:11

Re: Plus de potassium et moins de sodium pour la santé ?

Messagepar Nutrimuscle-Diététique » 27 Nov 2021 17:47

Traduction de l'étude :wink:

Impact du niveau d'adhésion au régime méditerranéen sur la pression artérielle : revue systématique et méta-analyse d'études observationnelles
Dimitra Rafailia Bakaloudi Clin Nutr VOLUME 40, NUMÉRO 12, P5771-5780, 01 DÉCEMBRE 2021

Fond
L'hypertension artérielle (bicarbonate de potassium) constitue une affection médicale courante et grave qui augmente dans le monde et fait partie des facteurs évitables pour les maladies cardiovasculaires, rénales, cérébrales et autres. Les facteurs de risque modifiables d'un taux élevé de bicarbonate de potassium comprennent des habitudes alimentaires malsaines, la présence d'obésité, une consommation excessive d'alcool et le manque d'activité physique. Les données concernant les différents types de régimes alimentaires montrent que le régime méditerranéen (DM) est associé à des niveaux sains de bicarbonate de potassium. Dans cette étude, nous avons cherché à étudier l'impact du niveau d'adhérence à la DM en bicarbonate de potassium.
Objectifs-méthodes
Une recherche documentaire systématique (jusqu'au 08.2021) dans les bases de données PubMed, Scopus, Embase, Web of Science, Cochrane et Google Scholar a été menée et 54 études observationnelles ont été incluses.
Résultats
La pression artérielle systolique (SBP) s'est avérée être plus faible dans le groupe MD adhérant fortement au SMD : -0,08, (IC à 95 % : -0,15, -0,02) alors qu'aucune différence concernant la pression artérielle diastolique (DBP) n'a été observée entre les valeurs élevées et faible adhésion aux groupes DM [DMS : -0,07, (IC à 95 % : -0,13, 0,00)]. La PAD moyenne de toutes les études incluses pour les groupes à adhésion élevée et faible était à des niveaux sains (<90 mmHg).
Conclusion
Une adhésion plus élevée au DM pourrait influencer positivement la PAS, mais des recherches supplémentaires sont nécessaires dans ce domaine en raison des définitions hétérogènes de l'adhésion faible/élevée et du type d'études utilisées (observationnelle).
Avatar de l’utilisateur
Nutrimuscle-Diététique
 
Messages: 12342
Inscription: 4 Mar 2013 09:39
Localisation: Athus

Re: Plus de potassium et moins de sodium pour la santé ?

Messagepar Nutrimuscle-Conseils » 28 Nov 2021 16:22

High-Salt Diet Impairs the Neurons Plasticity and the Neurotransmitters-Related Biological Processes
by Xiaoyue Du Nutrients 2021, 13(11), 4123;

Salt, commonly known as sodium chloride, is an important ingredient that the body requires in relatively minute quantities. However, consuming too much salt can lead to high blood pressure, heart disease and even disruption of circadian rhythms. The biological process of the circadian rhythm was first studied in Drosophila melanogaster and is well understood. Their locomotor activity gradually increases before the light is switched on and off, a phenomenon called anticipation. In a previous study, we showed that a high-salt diet (HSD) impairs morning anticipation behavior in Drosophila.

Here, we found that HSD did not significantly disrupt clock gene oscillation in the heads of flies, nor did it disrupt PERIOD protein oscillation in clock neurons or peripheral tissues. Remarkably, we found that HSD impairs neuronal plasticity in the axonal projections of circadian pacemaker neurons.

Interestingly, we showed that increased excitability in PDF neurons mimics HSD, which causes morning anticipation impairment. Moreover, we found that HSD significantly disrupts neurotransmitter-related biological processes in the brain. Taken together, our data show that an HSD affects the multiple functions of neurons and impairs physiological behaviors.
Avatar de l’utilisateur
Nutrimuscle-Conseils
Forum Admin
 
Messages: 53984
Inscription: 11 Sep 2008 19:11

Re: Plus de potassium et moins de sodium pour la santé ?

Messagepar Nutrimuscle-Diététique » 29 Nov 2021 13:14

Traduction de l'étude :wink:

Un régime riche en sel altère la plasticité des neurones et les processus biologiques liés aux neurotransmetteurs
par Xiaoyue Du Nutrients 2021, 13(11), 4123 ;

Le sel, communément appelé chlorure de sodium, est un ingrédient important dont le corps a besoin en quantités relativement infimes. Cependant, consommer trop de sel peut entraîner une hypertension artérielle, des maladies cardiaques et même une perturbation des rythmes circadiens. Le processus biologique du rythme circadien a été étudié pour la première fois chez Drosophila melanogaster et est bien compris. Leur activité locomotrice augmente progressivement avant que la lumière ne soit allumée et éteinte, un phénomène appelé anticipation. Dans une étude précédente, nous avons montré qu'un régime riche en sel (HSD) altère le comportement d'anticipation matinale chez la drosophile.

Ici, nous avons constaté que la HSD ne perturbait pas de manière significative l'oscillation du gène de l'horloge dans la tête des mouches, ni l'oscillation de la protéine PERIOD dans les neurones de l'horloge ou les tissus périphériques. Remarquablement, nous avons constaté que la HSD altère la plasticité neuronale dans les projections axonales des neurones du stimulateur circadien.

Fait intéressant, nous avons montré qu'une excitabilité accrue dans les neurones PDF imite la HSD, ce qui provoque une altération de l'anticipation matinale. De plus, nous avons découvert que la HSD perturbe considérablement les processus biologiques liés aux neurotransmetteurs dans le cervea
u. Ensemble, nos données montrent qu'un HSD affecte les multiples fonctions des neurones et altère les comportements physiologiques.
Avatar de l’utilisateur
Nutrimuscle-Diététique
 
Messages: 12342
Inscription: 4 Mar 2013 09:39
Localisation: Athus

Re: Plus de potassium et moins de sodium pour la santé ?

Messagepar Nutrimuscle-Conseils » 3 Déc 2021 16:18

Association of Systolic and Diastolic Blood Pressure With All-Cause Mortality Among Community-Dwelling Older Adults: A Prospective Observational Study
Qian Lian, Journal of Aging and Health 23, 2021

Objectives
To assess the association of systolic blood pressure (SBP) and diastolic blood pressure (DBP) with mortality among older adults in Singapore.

Methods
Association of SBP and DBP measured in 2009 for 4443 older adults (69.5±7.4 years; 60–97 years) participating in a nationally representative study with mortality risk through end-December 2015 was assessed using Cox regression.

Results
Higher mortality risk was observed at the lower and upper extremes of SBP and DBP. With SBP of 100–119 mmHg as the reference, multivariable mortality hazard ratios [HRs (95% confidence interval)] were SBP <100 mmHg: 2.41 (1.23–4.72); SBP 160–179 mmHg: 1.51 (1.02–2.22); and SBP ≥180 mmHg: 1.78 (1.12–2.81). With DBP of 70–79 mmHg as the reference, HRs were DBP <50 mmHg: 2.41 (1.28–4.54) and DBP ≥110 mmHg: 2.16 (1.09–4.31).

Discussion
Management of high blood pressure among older adults will likely reduce their mortality risk. However, the association of excessively low SBP and DBP values with mortality risk needs further evaluation.
Avatar de l’utilisateur
Nutrimuscle-Conseils
Forum Admin
 
Messages: 53984
Inscription: 11 Sep 2008 19:11

PrécédenteSuivante

Retourner vers Actualités, vidéos, études scientifiques

Qui est en ligne

Utilisateurs parcourant ce forum: Aucun utilisateur enregistré et 8 invités