Mechanistic insights into the treatment of iron-deficiency anemia and arthritis in humans with dietary molybdenum
Brian James Grech European Journal of Clinical Nutrition volume 75, pages1170–1175 (2021)
In the last few decades, there has been a resurgence in interest in the use of dietary supplements to treat diseases in humans and molybdenum has the potential to be used therapeutically. In humans, dietary molybdenum has been shown to treat iron-deficiency anemia and it may treat joint pain in arthritis. It has been proposed that the anti-anemic and tentative anti-arthritic properties of molybdenum are because it is increasing the activity of one or more mammalian molybdoenzymes. Molybdenum forms part of the active site of these enzymes. Despite this, it is unlikely that a molybdenum deficiency can develop in humans that are on an oral diet and not exposed to unsafe levels of a molybdenum antagonist. Therefore, the underlying mechanism by which dietary molybdenum treats or may treat these diseases is currently not known. This minireview examines three possible underlying mechanisms. It investigates the possibility that molybdenum: increases the quantity of active mammalian molybdoenzymes, restores or partially restores activity to malfunctioning mammalian molybdoenzymes, or blocks nuclear receptors, in cells. The examination of these mechanisms has provided an impression of the mechanism by which molybdenum treats iron-deficiency anemia and may treat arthritis; and hypothesize uses of molybdenum for other human diseases.