Systemic NOS inhibition reduces contracting muscle oxygenation more in intact female than male rats
AyakaTabuchi Nitric Oxide Volumes 100–101, 1 August 2020, Pages 38-44
Highlights
• Females respond to baroreceptor stimulation via modulation of heart rate rather than vascular conductance as seen in males.
• We reveal that systemic nitric oxide synthase inhibition reduces HR and muscle interstitial PO2 more in females than males.
• Sex differences may have important consequences in diseases with lower NO bioavailability e.g. heart failure and diabetes.
Females respond to baroreceptor stimulation with enhanced modulation of heart rate (HR) to regulate blood pressure and also express greater reliance on nitric oxide (NO) for vascular control compared to males. Sex differences in muscle oxygenation consequent to central hemodynamic challenge induced by systemic NO synthase (NOS) inhibition are unknown. We tested the hypotheses that systemic NOS inhibition would induce lower contracting skeletal muscle oxygenation in females compared to males. The spinotrapezius of Sprague-Dawley rats (females (♀) = 9, males (♂) = 9) was surgically exposed and contracted by electrical stimulation (180s, 1 Hz, ~6 V) under pentobarbital sodium anesthesia. Oxyphor G4 was injected into the muscle and phosphorescence quenching was used to measure the interstitial PO2 (PO2is, determined by O2 delivery-to-utilization matching) under control (Krebs-Henseleit solution) and after intra-arterial infusion of nitro-l-arginine methyl ester (l-NAME; NOS blockade; 10 mg kg−1). At rest, females showed a greater PO2is increase (ΔPO2is/ΔMAP) and HR (ΔHR/ΔMAP) reduction than males in response to the elevated MAP induced by systemic NOS inhibition (both p < 0.05). Following l-NAME, during the contracting steady-state, females exhibited lower PO2is than males (♂: 17.1 ± 1.4 vs ♀: 10.8 ± 1.4 mmHg, p < 0.05). The rate pressure product was lower in females than males (♂: 482 ± 14 vs ♀: 392 ± 29, p < 0.05) and correlated with the steady-state PO2is (r = 0.66, p < 0.05).
These results support that females express greater reductions in HR than males in response to l-NAME-induced elevation of MAP via the baroreceptor reflex and provide new insights on how central hemodynamics affect skeletal muscle oxygenation in a sex-specific manner.