Eccentric, but not concentric blood flow restriction resistance training increases muscle strength in the untrained limb
Ethan C.Hill Physical Therapy in Sport Available online 30 January 2020
Highlights
• Eccentric-only BFR increases muscle strength in an untrained arm.
• Increased muscle activation in untrained, contralateral limb.
• Eccentric-only BFR increased muscle strength for all modes.
• Mode of training, not BFR, affects cross-education.
Objectives
Little is known regarding the variables or mechanisms mediating cross-education as a result of resistance training. Therefore, the purpose of the present study was to examine the effects of low-load eccentric-only blood flow restriction (Ecc-BFR) and low-load concentric-only BFR (Con-BFR) on indices of cross-education.
Design
Thirty-six women were randomly assigned to 4-wks of unilateral resistance training with Ecc-BFR (n = 12), Con-BFR (n = 12) or control (no intervention, n = 12) group. Eccentric peak torque, concentric peak torque, maximal voluntary isometric contraction torque, muscle thickness, and muscle activation were assessed from the contralateral, untrained arm.
Results
Muscle strength (collapsed across mode) increased from 0-wk to 2-wks (4.9%) and 4-wks (13.0%) for Ecc-BFR only. There were increases in muscle activation (collapsed across mode and group) regardless of training modality, but there were no changes in muscle size for any of the conditions.
Conclusions
The findings of the present study indicated that low-load Ecc-BFR increased muscle strength. The increases in muscle strength as a result of Ecc-BFR were not mode-specific. Thus, low-load Ecc-BFR provides a unique alternative to maintain muscle function in an untrained limb that may have application during limb immobilization and rehabilitation practices.