Ultra-endurance triathlon performance and markers of whole-body and gut-specific inflammation
Kyle A. Smith, European Journal of Applied Physiology volume 120, pages349–357(2020)
Purpose
To examine the influence of the Ultraman Florida triathlon (3 days of non-continuous racing; stage 1: 10 km swim and 144.8 km cycle; stage 2: 275.4 km cycle; stage 3: 84.4 km run) on circulating plasma concentrations of whole-body (C-reactive protein (CRP), interleukin (IL)-6 (IL-6), and IL-10 and surrogate gut-specific inflammatory markers (IL-17 and IL-23), and determine whether these variables are associated with performance.
Methods
Eighteen triathletes (N = 18; 15 men, 3 women; age: 37 ± 8 yrs) were evaluated at baseline and post-race for circulating concentrations of CRP, IL-6, IL-10, IL-17, and IL-23. Blood samples were drawn two days prior to stage 1 (1600 h) and one day after stage 3 (1200 h).
Results
Plasma CRP significantly increased from baseline (1985.8 ± 5962.3 ng/mL) to post-race (27,013.9 ± 12,888.8 ng/mL, p < 0.001, 13-fold increase). Both plasma IL-6 and IL-10 did not significantly change from baseline to post-race. Baseline and post-race concentrations of IL-17 and IL-23 were below detectable limits. Pearson’s correlation between mean finish time and post-race IL-10 revealed a significant positive correlation (r = 0.54, p < 0.05).
Conclusions
Our results suggest that cytokines such as IL-6 and IL-10 involved in the inflammatory response return to near-baseline concentrations rapidly even after ultra-endurance events of extreme duration. The absence of IL-17 and IL-23 may suggest positive gut adaptations from ultra-endurance training. A significant positive correlation between post-race IL-10 concentrations and mean finish time may indicate that a relationship between anti-inflammatory responses and performance exists.