Rapid changes in the gut microbiome during human evolution
Andrew H. Moellera et al.
PNAS Published online before print November 3, 2014
Significance
Human lifestyles profoundly influence the communities of microorganisms that inhabit the body, that is, the microbiome; however, how the microbiomes of humans have diverged from those found within wild-living hominids is not clear. To establish how the gut microbiome has changed since the diversification of human and ape species, we characterized the microbial assemblages residing within hundreds of wild chimpanzees, bonobos, and gorillas. Changes in the composition of the microbiome accrued steadily as African apes diversified, but human microbiomes have diverged at an accelerated pace owing to a dramatic loss of ancestral microbial diversity. These results suggest that the human microbiome has undergone a substantial transformation since the human–chimpanzee split.
Abstract
Humans are ecosystems containing trillions of microorganisms, but the evolutionary history of this microbiome is obscured by a lack of knowledge about microbiomes of African apes. We sequenced the gut communities of hundreds of chimpanzees, bonobos, and gorillas and developed a phylogenetic approach to reconstruct how present-day human microbiomes have diverged from those of ancestral populations. Compositional change in the microbiome was slow and clock-like during African ape diversification, but human microbiomes have deviated from the ancestral state at an accelerated rate. Relative to the microbiomes of wild apes, human microbiomes have lost ancestral microbial diversity while becoming specialized for animal-based diets. Individual wild apes cultivate more phyla, classes, orders, families, genera, and species of bacteria than do individual humans across a range of societies. These results indicate that humanity has experienced a depletion of the gut flora since diverging from Pan.