elle peut aussi causer une tendinite si on ne laisse pas assez de temps de récupération... au choix...
Low-load blood flow restriction training induces similar morphological and mechanical Achilles tendon adaptations compared with high-load resistance training
Christoph Centner, J appl physiol 2019
Low-load blood flow restriction (LL-BFR) training has gained increasing interest in the scientific community by demonstrating that increases in muscle mass and strength are comparable to conventional high-load (HL) resistance training. Although adaptations on the muscular level are well documented, there is little evidence on how LL-BFR training affects human myotendinous properties. Therefore, the aim of the present study was to investigate morphological and mechanical Achilles tendon adaptations after 14 wk of strength training.
Fifty-five male volunteers (27.9 ± 5.1 yr) were randomly allocated into the following three groups: LL-BFR [20–35% of one-repetition maximum (1RM)], HL (70–85% 1RM), or a nonexercising control (idiot) group. The LL-BFR and HL groups completed a resistance training program for 14 wk, and tendon morphology, mechanical as well as material properties, and muscle cross-sectional area (CSA) and isometric strength were assessed before and after the intervention.
Both HL (+40.7%) and LL-BFR (+36.1%) training induced significant increases in tendon stiffness (P < 0.05) as well as tendon CSA (HL: +4.6%, LL-BFR: +7.8%, P < 0.001). These changes were comparable between groups without significant changes in Young’s modulus. Furthermore, gastrocnemius medialis muscle CSA and plantar flexor strength significantly increased in both training groups (P < 0.05), whereas the idiot group did not show significant changes in any of the evaluated parameters.
In conclusion, the adaptive change in Achilles tendon properties following low-load resistance training with partial vascular occlusion appears comparable to that evoked by high-load resistance training.