Concentrations of Circulating Phylloquinone, but Not Cerebral Menaquinone-4, Are Positively Correlated with a Wide Range of Cognitive Measures: Exploratory Findings in Centenarians
Jirayu Tanprasertsuk, The Journal of Nutrition, Volume 150, Issue 1, January 2020, Pages 82–90,
Background
Vitamin K (VK) exists in the form of phylloquinone (PK) and menaquinones (MKs). Roles of VK on cognitive health in the elderly are emerging, but there is limited evidence on VK uptake and metabolism in human brain.
Objectives
The primary objective of this study was to characterize VK distribution in brains of an elderly population with varied cognitive function. In addition, associations among circulating (a biomarker of VK intake) and cerebral VK concentrations and cognition were investigated.
Methods
Serum or plasma (n = 27) and brain samples from the frontal cortex (FC; n = 46) and the temporal cortex (TC; n = 33) were acquired from 48 decedents (aged 98–107 y; 25 demented and 23 nondemented) enrolled in the Georgia Centenarian Study. Both circulating and brain VK concentrations were measured using HPLC with fluorescence detection. Cognitive assessment was performed within 1 y prior to mortality. Partial correlations between serum/plasma or cerebral VK concentrations and cognitive function were performed, adjusting for covariates and separating by dementia and antithrombotic use.
Results
MK-4 was the predominant vitamer in both FC (mean ± SD = 4.92 ± 2.31 pmol/g, ≥89.15% ± 5.09% of total VK) and TC (4.60 ± 2.11 pmol/g, ≥89.71% ± 4.43% of total VK) regardless of cognitive status. Antithrombotic users had 34.0% and 53.9% lower MK-4 concentrations in FC (P < 0.05) and TC (P < 0.001), respectively. Circulating PK was not correlated with cerebral MK-4 or total VK concentrations. Circulating PK concentrations were significantly associated with a wide range of cognitive measures in nondemented centenarians (P < 0.05). In contrast, cerebral MK-4 concentrations were not associated with cognitive performance, either before or after exclusion of antithrombotic users.
Conclusions
Circulating VK concentrations are not related to cerebral MK-4 concentrations in centenarians. Cerebral MK-4 concentrations are tightly regulated over a range of VK intakes and cognitive function. Circulating PK may reflect intake of VK-rich foods containing other dietary components beneficial to cognitive health. Further investigation of VK uptake and metabolism in the brain is warranted.