Exercise mitigates sleep-loss-induced changes in glucose tolerance, mitochondrial function, sarcoplasmic protein synthesis, and diurnal rhythms
Nicholas J.Saner Molecular Metabolism Available online 31 October 2020, 101110
Highlights
• Sleep-loss-induced reductions in glucose tolerance occur with concomitant reductions in mitochondrial function and sarcoplasmic protein synthesis.
• Sleep loss leads to reductions in the amplitude of skin temperature diurnal rhythms.
• These detrimental effects were not observed when performing exercise during a period of sleep loss.
Objective
Sleep loss has emerged as a risk factor for the development of impaired glucose tolerance. The mechanisms underpinning this observation are unknown; however, both mitochondrial dysfunction and circadian misalignment have been proposed. Given that exercise improves glucose tolerance, mitochondrial function, and alters circadian rhythms, we investigated whether exercise may counteract the effects induced by inadequate sleep.
Methods
24 healthy young males were allocated, so as to minimise between-group differences of baseline characteristics, into one of the three experimental groups; a Normal Sleep (NS) group (8 h time in bed (TIB) per night, for five nights), a Sleep Restriction (SR) group (4 h TIB per night, for five nights), and a Sleep Restriction and Exercise group (SR+EX) (4 h TIB per night, for five nights and three high-intensity interval exercise (HIIE) sessions). Glucose tolerance, mitochondrial respiratory function, sarcoplasmic protein synthesis (SarcPS), and diurnal measures of peripheral skin temperature were assessed pre- and post-intervention.
Results
We report that the SR group had reduced glucose tolerance post-intervention (mean change ± SD, P value, SR glucose AUC: 149 ± 115 A.U., P=0.002), which was also associated with reductions in mitochondrial respiratory function (SR: -15.9 ± 12.4 pmol O2.s-1.mg-1, P=0.001), a lower rate of SarcPS (FSR%/day SR: 1.11 ± 0.25%, P<0.001), and reduced amplitude of diurnal rhythms. These effects were not observed when incorporating three sessions of HIIE during this period (SR+EX: glucose AUC 67 ± 57, P=0.239, mitochondrial respiratory function: 0.6 ± 11.8 pmol O2.s-1.mg-1, P=0.997, and SarcPS (FSR%/day): 1.77 ± 0.22%, P=0.971).
Conclusions
A five-night period of sleep restriction leads to reductions in mitochondrial respiratory function, SarcPS, and amplitude of skin temperature diurnal rhythms, with concurrent reductions in glucose tolerance. We provide novel data demonstrating that these same detrimental effects are not observed when HIIE is performed during the period of sleep restriction. These data therefore provide evidence in support of the use of HIIE as an intervention to mitigate the detrimental physiological effects of sleep loss.