The Effect of Feeding During Recovery from Aerobic Exercise on Skeletal Muscle Intracellular Signaling
IJSNEM Volume 24, Issue 1, February 2014, 24, 70 – 78 Authors: Paul T. Reidy
We previously reported an increase in skeletal muscle protein synthesis during fasted and fed recovery from nonexhaustive aerobic exercise (Harber et al., 2010). The current study examined skeletal muscle intracellular signaling in the same subjects to further investigate mechanisms of skeletal muscle protein metabolism with and without feeding following aerobic exercise.
Eight males (VO2peak: 52 ± 2 ml–1∙kg–1∙min–1) performed 60-min of cycle ergometry at 72 ± 1% VO2peak on two occasions in a counter-balanced design.
Exercise trials differed only in the postexercise nutritional intervention: EX-FED (5kcal, 0.83g carbohydrate, 0.37g protein, 0.03g fat per kg body weight) and EX-FAST (noncaloric, isovolumic placebo) ingested immediately and one hour after exercise. Muscle biopsies were obtained from the vastus lateralis at rest (on a separate day) and two hours postexercise to assess intracellular signaling via western blotting of p70S6K1, eEF2, 4EBP1, AMPKα and p38 MAPK. p70S6K1 phosphorylation was elevated (p < .05) in EX-FED relative to REST and EX-FAST. eEF2, 4EBP1, AMPKα and p38 MAPK signaling were unaltered at 2h after exercise independent of feeding status when expressed as the ratio of phosphorylated to total protein normalized to actin.
These data demonstrate that feeding after a nonexhaustive bout of aerobic exercise stimulates skeletal muscle p70S6K1 intracellular signaling favorable for promoting protein synthesis which may, as recent literature has suggested, better prepare the muscle for subsequent exercise bouts. These data provide further support into the role of feeding on mechanisms regulating muscle protein metabolism during recovery from aerobic exercise.