Imbalance Between Omega-6- and Omega-3-Derived Bioactive Lipids in Arthritis in Older Adults
Roxana Coras The Journals of Gerontology: Series A, Volume 76, Issue 3, March 2021, Pages 415–425
Elderly-onset rheumatoid arthritis (EORA) and polymyalgia rheumatica (PMR) are common rheumatic diseases in older adults. Oxylipins are bioactive lipids derived from omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFAs) that serve as activators or suppressors of systemic inflammation. We hypothesized that arthritis symptoms in older adults were related to oxylipin-related perturbations. Arthritis in older adults (ARTIEL) is an observational prospective cohort with 64 patients older than 60 years of age with newly diagnosed arthritis. Patients’ blood samples at baseline and 3 months posttreatment were compared with 18 controls. A thorough clinical examination was conducted. Serum oxylipins were determined by mass spectrometry. Data processing and statistical analysis were performed in R. Forty-four patients were diagnosed with EORA and 20 with PMR. At diagnosis, EORA patients had a mean DAS28CRP (Disease Activity Score 28 using C-reactive protein) of 5.77 (SD 1.02). One hundred percent of PMR patients reported shoulder pain and 90% reported pelvic pain.
Several n-6- and n-3-derived oxylipin species were significantly different between controls and arthritis patients. The ratio of n-3/n-6 PUFA was significantly downregulated in EORA but not in PMR patients as compared to controls. The top two candidates as biomarkers for differentiating PMR from EORA were 4-HDoHE, a hydroxydocosahexaenoic acid, and 8,15-dihydroxy-eicosatrienoic acid (8,15-diHETE). The levels of n-3-derived anti-inflammatory species increased in EORA after treatment. These results suggest that certain oxylipins may be key effectors in arthrtis in older adults and that the imbalance between n-6- and n-3-derived oxylipins might be related to pathobiology in this population.